3D Object Recognition Using Unsupervised Feature Extraction
نویسندگان
چکیده
Intrator (1990) proposed a feature extraction method that is related to recent statistical theory (Huber, 1985; Friedman, 1987), and is based on a biologically motivated model of neuronal plasticity (Bienenstock et al., 1982). This method has been recently applied to feature extraction in the context of recognizing 3D objects from single 2D views (Intrator and Gold, 1991). Here we describe experiments designed to analyze the nature of the extracted features, and their relevance to the theory and psychophysics of object recognition.
منابع مشابه
Three-Dimensional Object Recognition Using an Unsupervised BCM Network: The Usefulness of Distinguishing Features
We propose an object recognition scheme based on a method for feature extraction from gray level images that corresponds to recent statistical theory, called projection pursuit, and is derived from a biologically motivated feature extracting neuron. To evaluate the performance of this method we use a set of very detailed psychophysical 3D object recognition experiments (B ulthoo and Edelman, 19...
متن کاملLinear feature extraction techniques for object recognition: study of PCA and ICA
In this paper, we have compared linear techniques for object recognition. 3D object recognition is the process of matching an object to a scene description to determine the objects identity and / or its pose in space. Several face recognition techniques uses unsupervised statistical methods. The basic idea is to compute the principal components as sequence of image vectors incrementally, withou...
متن کاملOn the Applicability of Unsupervised Feature Learning for Object Recognition in RGB-D Data
We present a feature extraction method for RGB-D data based on k-means clustering that builds on recent work by Coates et al. Using unsupervised learning methods we are able to automatically learn feature responses that combine all available information (color and depth) into one, concise representation. We show that depth information can substantially increase the recognition performance and t...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملCombining unsupervised learning and discrimination for 3D action recognition
Previous work on 3D action recognition has focused on using hand-designed features, either from depth videos or 2D videos. In this work, we present an effective way to combine unsupervised feature learning with discriminative feature mining. Unsupervised feature learning allows us to extract spatio-temporal features from unlabeled video data. With this, we can avoid the cumbersome process of de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1991